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Abstract 
A new technique is presented that can perfectly &&rat& two cochannel FM signals in 

a noiseless  environment. The method involves the analytic solution of the phases to within 
one of two possibilities, and a two-state  trellis algorithm to trace the correct  sequence of 
phase  solutions. This method  represents an improvement over other cochanne!  interference 
separatio2  methods (e.g., joint Viterbi and cross-coupled  phase-locked  loop)  which can 
never  perfectly separate  the signals.  Simulations  confirm the separation capability of the 
analytic technique. 

. -  . 

1 Introduction 
The complex  baseband  representation of a sampled  cochannel FM signal is 

r[n] = A[n]ejs["] + B[n]ej4["], (1) 

When  no  confusion  can result,  the  subscript n will be dropped.  Initially, we shall  assume  that 
there is  no  noise and  that A and B are known and vary slowly compared  to 6 and 4.  Given A ,  
B and T ,  accurate  estimates of 8 and 4 are  desired. 

2 Analysis 
One might  expect,  and indeed it  turns  out  that,  with one  equation  (Equation (1)) and two 
unknowns (6 and 4), there  are two possible  solutions for the phases. However, previous work 

*The research  described in this  paper was carried out by the  Jet Propulsion  Laboratory,  California  Institute 
of Technology, under a contract with the National  Aeronautics and Space  Administration. 

1 

mailto:harnkins@jpl.nasa.gov


and  thus 

By  the  symmetry of Equation (11, we may  also  immediately  write: 

$ = arg[r(B + Acos($ - e) +jAsin($ - e))]. 
By Letting D = cos($ - 8) = (llr1I2 - A' - B2)/(2AB), from Equation (2) we have 

e = arg [ r ( ~  + BD f ~ B ~ C P ) ]  

4 = arg [ r ( ~  + AD j A d F 3 ) j  . 

We have thus  determined  the phases  exactly, to within  one of two possibilities. 

3 The Tracking Algorithm 
For a single sample r[n] ,  there is no reason to  prefer  one  solution for O[n] and $[n] over the  other 
possible solution. However, a sequence of solutions O[n - 21, O[n - 11, e[n], . . . , and $[n - 21, 
@[n - 11, $[.I, . . . , can be chosen that has the  bandwidth (or spectral  density, if known) we 
expect for the underlying  modulated  phase. 
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We set  up a two-state  trellis, in which the first state represents  the  solution 

6 = arg [r(A + BD + jBJi--"i)] 

q5 = arg [r(B + AD - j A d m ) ]  . 

and  the second state represents  the  solution 

0 = arg [r(A + B D  - j B d m ) ]  

q5 = arg [r(B + AD + j A d m ) ]  . 

The sequence of solution choices will be  traced  through  the  trellis  using a Viterbi  algorithm. 
We want to  choose the  solution at time n that minimizes the disagreement  between the 

instantaneous frequency  hypothesized by the  solution  and  the  instantaneous  frequency  predicted 
from  previous  tentatively chosen values of the  instantaneous frequency. Thus, at each state at 
time n, we store  the  phase  solutions (8[72], &n]) as determined by Equations (3) and (4), as 
well as the  instantaneous frequencies (B'[n],  $[nj) and  the  predicted  instantaneous frequencies 
(s'[n + 11, $[n + 11). The  instantaneous frequency at time n is approximated  from  the  phase 
using  finite differences, and  the  predicted  instantaneous frequency is calculated  using  an  mth 
order  Levinson-Durbin  iinear  predictive  coder (LPC), which has  the  form 

m 

@[n + 11 = uzel[n + 1 - 21. 
." 

i=l 

A similar LPC is used for $[n + 11. 
The Levinson-Durbin LPC is the  linear  minimum-mean  squared  error  (LMMSE)  estimator 

for the phases. The coefficients ai are  determined  with a standard  technique, as follows. Let 
ri = E(O'[n]O'[n - i ] ) ,  let = ( T I , .  . . , rm)T, and  let 

R , =  

Then  the coefficients are given by u = Ri!,v. There is an efficient iterative  technique to 
determine  the  mth  order coefficients from the (m - 1)th order coefficients, so that  comput- 
ing the inverse of the large autocorrelation  matrix is not necessary [3]. To estimate T i  we 
assume a flat power spectrum  density for 8' with a sharp cutoff at B Hz. Taking  the in- 
verse Fourier  transform gives ri = sinc(2iBT,), where T, is the  sampling  rate. For example, 
if the  bandwidth is 4 kHz. and T, = 1/132300  sec., then for a fourth  order  LPC we have 
v = (0.993996,0.976115,0.946741, 0.906506)T and a = (3.96459,  -5.92481,3.95553,  -0.995421)T. 
If more is known about  the  spectral  characteristics of O', then more accurate coefficients may  be 
determined. 
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Table 1: Performance  results for five variations of the  Ambassador-Brit  test case. 

Sub- 
Technique Viterbi (dB) Deviation  case 
Analytical Joint SIR Frequency 

(kHz) (MSE)  (MSE) 
A 

o.oo/o.oo -/- 30 12 E 
O.OO/O.OO 0.71/0.97 1 8 D 
O.OO/O.OO 0.16/0.96 6 8 C 
O.OO/O.OO 0.59/0.66 1 12 B 
O.OO/O.OO 0.09/0.45 6 12 

The branch  metric  from state i at time n - 1 to  state j and  time n is the  squared difference 
between the  Levinson-Durbin  prediction for O’[n] from state i and  the  hypothesized  solution e’[n] 
from state j ,  added to  the similar  squared difference for ~ ’ [ T z ] .  The  Viterbi  algorithm  operates 
by computing  the four  branch  metrics at each time  step,  storing  an  accumulated  metric,  and 
tracing backwards  in the trellis to find the  correct  phase  solution. 

4 Simulations  and Conclusions 
This  analytic  method  has been coded in C and  simulations have been run  on a Pentium 166 
machine.  Parameters  that  can be passed to  the program  include the  sampling  rate,  decoding 
delay, and  order of the  linear  prediction;  and  the  amplitudes  and  modulating  signal  bandwidths 
of the  cochannel  signals.  The  program  reads in  all  parameters,  computes  the  Levinson-Durbin 
LPC coefficients from the sampling  rate  and  bandwidths,  and  then begins the  Viterbi  algorithm 
as described  in  the previous  section. 

There were five test cases for FM voice signals.  In each case the  the first voice is the  Iraqi 
ambassador  and  the second voice is a British  woman.  In all cases, the  sampling  rate  is 132300 
Hz., (to  match-with previous  tests for the  joint  Viterbi  and  CCPLL),  the SNR is  infinity, a 
fifth  order LPC is used under  the  assumption of flat 4 kHz. bandwidth  modulating  signals, 
and  the  decoding  delay  is 1. The  SIR  and frequency  deviations were varied.  Table 1 gives the 
normalized  mean-squared  error  (MSE) between the  true  and  estimated  instantaneous frequencies 
of the  dominant  and  subdominant  signals,  and  compares it to  the  joint  Viterbi  algorithm [4]. In 
all sub-cases, both  the  dominant  and  subdominant signals were separated  perfectly,  to  within 
the floating point precision of the  computer  (normalized MSE of or  less),  i.e.,  the  correct 
branch of the  trellis was chosen at  every step.  In  addition,  the  one-step  linear  predictor itself  is 
very accurate; in every subcase,  the average difference between the  linearly  predicted  phase  and 
the phase given by the chosen state is 1.5 degrees  or less. 

This new analytic  technique is capable of perfect separation in a noiseless environment. Ad- 
ditional research and  simulation is needed, however, to provide for estimation of unknown  ampli- 
tudes.  One  simple  technique  to  estimate  the  amplitudes is to find the  maximum  and  minimum 
of llrll over a large  set of samples. For very low noise, the  minimum value is approximately A - B 
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and  the  maximum value is approximately A + B. The values of A and B can  then  be  estimated 
by adding  and  subtracting these  numbers. Or  amplitude  estimation  can be included  within the 
trellis  itself,  using a gradient  descent  algorithm. 

Additional work is  also needed to  determine  the resistance of the  algorithm  to  the  introduction 
of noise.  Clearly, noise can  cause  inaccuracies  in the  analytic  solutions; however, there seems 
promise for improvements over other techniques. 
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